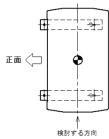
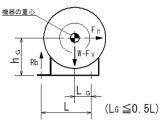
電気温水器耐震強度計算書

1.アンカーボルト選定


製品型式	ES-20N3(B)(X)		
アンカーボルト本数		_	4
アンカーボルト径	d	cm	0.51
アンカーボルト種類		-	十字穴付き丸木ねじ(φ5.1)
アンカーボルト長さ	а	cm	2.0
本体固定脚板厚	t	cm	0.46
アンカーボルトの有効埋込長さ	Н	cm	0.88


2 検討結果(設計用震度は局部震度法による)

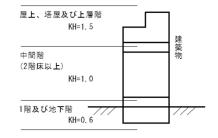
۷.1	大小仙木 (以山川辰	又で印印	文/文/公	~6·0/			
酒日	(単位)			設置階	1階及び 地下階	中間階	屋上、塔屋 及び上層階
設計用 水平震度 KH			_	0.6	1.0	1.5	
製品質量(運転質量) M			kg	33.0			
機器の重量 W			kN	0.32			
設計用 水平地震力			kN	0.19 0.32 0.49			
			F _V	kN	0.19	0.16	0.49
A. 11.					19.9		
			cm	19.9			
検討する方向から見た アンカーボルト中心~重心間距離			cm	9.8			
	検討する方向から見た アンカーボルト間距離			cm	25.6		
アン	アンカーボルト本数 n			-	4		
	転倒を考えた場合の引張 る片側のアンカーボルト本		n _t	-	2		
判	アンカーボルト引抜荷重	計算値	Rb	kN	0.032	0.095	0.173
		許容値	Pa	kN	1.078		
定	せん断力	計算値	Q	kN	0.049	0.081	0.121
		許容値	Pb	kN		0.457	
判定結果				-	合格	合格	合格

3.注記

- 上記検討計算の引抜荷重は、「建築設備耐震設計・施工指針」(2005年度版)によるものです。
- 上記の許容せん断耐力は、「木質構造設計基準・同解説」(第4版)によるものです。
- アンカーボルトの有効埋込長さは埋込長さから先端の傾斜部(3ピッチ分)を差し引いた値です。
- 本製品は「建築基準法施行令第129条の二の四第二号の規定に基づき、建築設備の構造耐力上安全な 構造方法を定める件」に準拠しています。

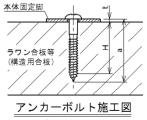
計算モデル図

計算式


 $W = \frac{M \times 9.8}{1000}$

FH= KH×W

 $Fv = FH \times \frac{1}{2}$


 $Q = \frac{FH}{n}$

 $Rb = \frac{FH \times hG - (W - Fv) \times LG}{}$

局部震度法による設計用震度

(十字穴付き丸木ねじ)

判定基準

- 1. Rb<Pa 木ねじの短期許容引抜耐力[kN] (18㎜厚のラワン合板に取り付けた 場合の実測値)
- 2. Q<Pb 木ねじの短期許容せん断耐力[kN] Pb= $\frac{1}{3}$ × jK_d × jK_m × r_u × Py ÷ 1000 (jKd=2.0, jKm=0.7, ru=1.5)Py= $C \times Fe \times db \times H'$ C= Min(1, $\sqrt{2 + \frac{2}{3} \gamma (\frac{db}{H'})^2} - 1$, $\frac{db}{H'} \sqrt{\frac{2}{3} \gamma}$) $\gamma = \frac{F}{Fe}$

 $da = d \times 10$, $H' = H \times 10$ db= da \times 0. 75. Fe= 19.4 $\lceil N/mm^2 \rceil$ 4.0<da≦5.5の場合… F= 540[N/mm²] 5.5<da の場合… F= 490[N/mm²]